Applying a Path-Dependent Model for Salmonella Thermal Inactivation in Slow-Cooked Turkey and Beef Products

> Maria Isabel Tenorio Bernal, Bradley P. Marks, Sara L. Jones

Outline

- Pathogen thermal inactivation
- Model development
- Methods
- Model application and Results
- Conclusions and Significance

Objectives

1. To estimate the parameters for a novel, path-dependent model for thermal inactivation of *Salmonella* in meat products.

2. To validate the model against independent data from scaled-up experiments.

Pathogen thermal inactivation

time

But, bacterial populations can adapt (e.g., synthesis of heat shock proteins), so that in path-dependent models

b = *f*(state *and* sublethal thermal history)

MICHIGAN STATE

Model Development

Current model: state-dependent

$$\log S = \log \frac{N}{N_o} = -bt$$

$$b(T) = b_{ref} \exp\left\{-\beta_1 \left[\frac{1}{T(t)} - \frac{1}{T_{ref}}\right]\right\}$$

Model Development

- New model: path-dependent
- Heat shock region ("memory" effect)
- Sublethal thermal history (τ)

Model Development

• New model: path-dependent

Experimental design, <u>1 g samples</u>

- Ground turkey and beef
 - Calibration (n=30 treatments each)
 - Validation (n=15 treatments each)
- Random combinations (in triplicate) of:
 - Heating rate (1, 2, 3, 4, or 7 K/min)
 - Sublethal holding (none, 40, 45, or 50°C)
 - Final (lethal) holding (55, 58, 61, or 64°C)
 - Sublethal history (τ = 14, 25, 50, 100, 200 K min)
 - Target kill (various)

Experimental design, 25 g samples

- Substrate:
 - Ground turkey and beef patties (n=9)
- Inoculum:
 - Salmonella (8-serovar "cocktail")
 - Initial concentration in meat: 10⁸ CFU/g
- Treatments:
 - Computer-controlled, moist-air convection oven
 - Variable times (30-120 min)
 - Target: 6.5 and 7 log reductions

Methods, <u>1 g samples</u>

Methods, 25 g samples

MICHIGAN STATE

Obtaining new model parameters

- Parameters: b_{ref} , β_1 , β_2
- Calculated cumulative lethality (i.e., log reductions) for each treatment (1 g)
 - Error = Observed Predicted
 - Minimize SSE using Excel's solver
- Compared state-dependent to pathdependent model results
- Additionally: obtained β₂ with ovencooked data (25 g), with fixed b_{ref}, β₁.

Results, 1 g samples, turkey

Ground Turkey: Calibration Set

Sublethal injury (Tau)

Results, 1 g samples, turkey

Ground Turkey: Validation Set

Sublethal injury (T)

Results, 25 g samples, turkey

Ground turkey oven-cooked samples: all parameters

Results, 25 g samples, turkey

Ground Turkey oven-cooked samples: effect of B2

Results, turkey

Parameters	Tested against	Results	RMSE reduction
State-dependent model	Calibration (1 g)	n=90 RMSE=8.5	-
	Validation (1 g)	n=45 RMSE=8.3	-
	Oven-cooked (25 g)	n=9 RMSE=2.1	-
Path-dependent model	Calibration (1 g)	n=90, p=3 RMSE=1.4	84%
	Validation (1 g)	n=45 RMSE=1.3	84%
	Oven-cooked (25 g)	n=9 RMSE=2.5	-20%
State-dependent model with B2	Oven-cooked (25 g)	n=9, p=1 RMSE=1.0	51%

MICHIGAN STATE

Results, beef

Parameters	Tested against	Results	RMSE reduction
State-dependent model	Calibration (1 g)	n=90 RMSE=8.7	-
	Validation (1 g)	n=45 RMSE=8.8	-
	Oven-cooked (25 g)	n=9 RMSE=3.1	-
Path-dependent model	Calibration (1 g)	n=90, p=3 RMSE=1.1	88 %
	Validation (1 g)	n=45 RMSE=1.1	88%
	Oven-cooked (25 g)	n=9 RMSE=1.6	49 %
State-dependent model with B2	Oven-cooked (25 g)	n=9, p=1 RMSE=1.7	45 %

MICHIGAN STATE

Results, turkey parameters

Parameters	State-dependent model	Path-dependent model
b _{ref} (min⁻¹)	0.9395	0.3775
β ₁ (K ⁻¹)	48,762	45,564
β_2 (K ⁻¹ min ⁻¹)	-	6.83 x 10 ⁻³

Results, beef parameters

Parameters	State-dependent model	Path-dependent model
b _{ref} (min ⁻¹)	1.0100	0.3873
β ₁ (K ⁻¹)	46,573	36,836
β_2 (K ⁻¹ min ⁻¹)	_	3.23 x 10 ⁻⁵

Conclusions

- Model parameters reflect:
 - b = rate of inactivation
 - β_1 = effect of T on rate of inactivation
 - β_2 = effect of sublethal injury on inactivation rates
- State-dependent model biggest deviations:
 - 1 g : -17.3 and -19.5 log reductions (turkey and beef respectively)
 - 25 g : -2.8 and -5.2 log reductions
- Path-dependent model biggest deviations:
 - 1 g : -2.6 and -1.9 log reductions
 - 25 g : 3.9 and 2.7 (-1.0 for "dangerous") log reductions

Significance

- Estimating inactivation parameters for bacterial food pathogens is...
 - influenced by relatively large variability in the raw data (i.e., biological organisms).
 - influenced by substrate.
- The path-dependent model significantly improved accuracy (and would thereby improve assurance of food safety).
- Reducibility of the path-dependent model was relatively poor, indicating a need to improve the sublethal thermal injury (τ) function.

Questions / Comments ?

